
Introduction to geospatial vector data
in Python
%matplotlib inline

import pandas as pd
import geopandas

Importing geospatial data
Geospatial data is often available from specific GIS file formats or data stores, like ESRI
shapefiles, GeoJSON files, geopackage files, PostGIS (PostgreSQL) database, ...

We can use the GeoPandas library to read many of those GIS file formats (relying on the
fiona library under the hood, which is an interface to GDAL/OGR), using the
geopandas.read_file function.

For example, let's start by reading a shapefile with all the taghsimat of the world (adapted
from http://www.naturalearthdata.com/downloads/110m-cultural-vectors/110m-admin-0-
taghsimat/, zip file is available in the /data directory), and inspect the data:

taghsimat = geopandas.read_file("data/ne_110m_admin_0_taghsimat.zip")
or if the archive is unpacked:
taghsimat = geopandas.read_file("data/taghsimat98_3.shp")

taghsimat.head()

taghsimat

taghsimat.plot()

taghsimat.explore()

What do we observe:

Using .head() we can see the first rows of the dataset, just like we can do with
Pandas.
There is a geometry column and the different taghsimat are represented as polygons

In []:

In [9]:

In []:

In []:

In []:

In []:

In []:

In []:

11/20/24, 2:30 PM 01-introduction-geospatial-data

file:///E:/python_course/01-introduction-geospatial-data.html 1/7

http://www.naturalearthdata.com/downloads/110m-cultural-vectors/110m-admin-0-taghsimat/
http://www.naturalearthdata.com/downloads/110m-cultural-vectors/110m-admin-0-taghsimat/

We can use the .plot() (matplotlib) or explore() (Folium / Leaflet.js) method to
quickly get a basic visualization of the data

What's a GeoDataFrame?
We used the GeoPandas library to read in the geospatial data, and this returned us a
GeoDataFrame :

type(taghsimat)

A GeoDataFrame contains a tabular, geospatial dataset:

It has a 'geometry' column that holds the geometry information (or features in
GeoJSON).
The other columns are the attributes (or properties in GeoJSON) that describe each of
the geometries

Such a GeoDataFrame is just like a pandas DataFrame , but with some additional
functionality for working with geospatial data:

A .geometry attribute that always returns the column with the geometry information
(returning a GeoSeries). The column name itself does not necessarily need to be
'geometry', but it will always be accessible as the .geometry attribute.
It has some extra methods for working with spatial data (area, distance, buffer,
intersection, ...), which we will learn in later notebooks

taghsimat.geometry

type(taghsimat.geometry)

taghsimat.geometry.area

It's still a DataFrame, so we have all the Pandas functionality available to use on the
geospatial dataset, and to do data manipulations with the attributes and geometry
information together.

For example, we can calculate average population number over all taghsimat (by accessing
the 'pop_est' column, and calling the mean method on it):

taghsimat['AR1'].mean()

Or, we can use boolean filtering to select a subset of the dataframe based on a condition:

tehran = taghsimat[taghsimat['Region_Eng'] == 'Tehran']

tehran.plot();

In []:

In []:

In []:

In []:

In []:

In [27]:

In []:

11/20/24, 2:30 PM 01-introduction-geospatial-data

file:///E:/python_course/01-introduction-geospatial-data.html 2/7

tehran.explore()

The rest of the tutorial is going to assume you already know some pandas basics, but we will
try to give hints for that part for those that are not familiar.
A few resources in case you want to learn more about pandas:

Pandas docs: https://pandas.pydata.org/pandas-docs/stable/10min.html
Other tutorials: chapter from pandas in
https://jakevdp.github.io/PythonDataScienceHandbook/,
https://github.com/jorisvandenbossche/pandas-tutorial,
https://github.com/TomAugspurger/pandas-head-to-tail, ...

REMEMBER:

A GeoDataFrame allows to perform typical tabular data analysis
together with spatial operations
A GeoDataFrame (or Feature Collection) consists of:

Geometries or features: the spatial objects
Attributes or properties: columns with information about each
spatial object

Geometries: Points, Linestrings and Polygons
Spatial vector data can consist of different types, and the 3 fundamental types are:

Point data: represents a single point in space.
Line data ("LineString"): represents a sequence of points that form a line.
Polygon data: represents a filled area.

And each of them can also be combined in multi-part geometries (See
https://shapely.readthedocs.io/en/stable/manual.html#geometric-objects for extensive
overview).

For the example we have seen up to now, the individual geometry objects are Polygons:

print(taghsimat.geometry[2])

The shapely library

In []:

In []:

11/20/24, 2:30 PM 01-introduction-geospatial-data

file:///E:/python_course/01-introduction-geospatial-data.html 3/7

https://pandas.pydata.org/pandas-docs/stable/10min.html
https://jakevdp.github.io/PythonDataScienceHandbook/
https://github.com/jorisvandenbossche/pandas-tutorial
https://github.com/TomAugspurger/pandas-head-to-tail
https://shapely.readthedocs.io/en/stable/manual.html#geometric-objects

The individual geometry objects are provided by the shapely library

type(taghsimat.geometry[0])

To construct one ourselves:

from shapely.geometry import Point, Polygon, LineString

p = Point(0, 0)

print(p)

polygon = Polygon([(1, 1), (2,2), (2, 1)])

polygon.area

polygon.distance(p)

REMEMBER:

Single geometries are represented by shapely objects:

If you access a single geometry of a GeoDataFrame, you get a shapely
geometry object
Those objects have similar functionality as geopandas objects
(GeoDataFrame/GeoSeries). For example:

single_shapely_object.distance(other_point) ->
distance between two points
geodataframe.distance(other_point) -> distance for each

point in the geodataframe to the other point

Let's practice!
Throughout the exercises in this course, we will work with several datasets about the city of
Paris.

Here, we start with the following datasets:

The administrative districts of Paris
(https://opendata.paris.fr/explore/dataset/quartier_paris/):
paris_districts_utm.geojson

Real-time (at the moment I downloaded them ..) information about the public bicycle
sharing system in Paris (vélib, https://opendata.paris.fr/explore/dataset/stations-velib-

In []:

In [34]:

In [35]:

In []:

In [39]:

In []:

In []:

11/20/24, 2:30 PM 01-introduction-geospatial-data

file:///E:/python_course/01-introduction-geospatial-data.html 4/7

https://shapely.readthedocs.io/en/stable/
https://opendata.paris.fr/explore/dataset/quartier_paris/
https://opendata.paris.fr/explore/dataset/stations-velib-disponibilites-en-temps-reel/information/

disponibilites-en-temps-reel/information/):
data/paris_bike_stations_mercator.gpkg

Both datasets are provided as spatial datasets using a GIS file format.

Let's explore further those datasets, now using the spatial aspect as well.

EXERCISE 1:

We will start with exploring the bicycle station dataset (available as a GeoPackage file:
data/paris_bike_stations_mercator.gpkg)

Read the stations datasets into a GeoDataFrame called stations .
Check the type of the returned object
Check the first rows of the dataframes. What kind of geometries does this datasets
contain?
How many features are there in the dataset?

Hints

EXERCISE 2:

Make a quick plot of the stations dataset.
Make the plot a bit larger by setting the figure size to (12, 6) (hint: the plot
method accepts a figsize keyword).

EXERCISE 4:

Make a histogram showing the distribution of the number of bike stands in the
stations.

Hints

EXERCISE 5:

Let's now visualize where the available bikes are actually stationed:

Make a plot of the stations dataset (also with a (12, 6) figsize).
Use the 'available_bikes' columns to determine the color of the points. For
this, use the column= keyword.
Use the legend=True keyword to show a color bar.

EXERCISE 6:

11/20/24, 2:30 PM 01-introduction-geospatial-data

file:///E:/python_course/01-introduction-geospatial-data.html 5/7

https://opendata.paris.fr/explore/dataset/stations-velib-disponibilites-en-temps-reel/information/

Next, we will explore the dataset on the administrative districts of Paris (available as a
GeoJSON file: "data/paris_districts_utm.geojson")

Read the dataset into a GeoDataFrame called districts .
Check the first rows of the dataframe. What kind of geometries does this dataset
contain?
How many features are there in the dataset? (hint: use the .shape attribute)
Make a quick plot of the districts dataset (set the figure size to (12, 6)).

EXERCISE 7:

What are the largest districts (biggest area)?

Calculate the area of each district.
Add this area as a new column to the districts dataframe.
Sort the dataframe by this area column for largest to smallest values (descending).

Hints

tehran = taghsimat[taghsimat['Region_Eng'] == 'Tehran']
zanjan = taghsimat[taghsimat['Region_Eng'] == 'Zanjan']

zanjan

buf= tehran.to_crs('3857').buffer(5000)

map = buf.explore(color='red', label='Buffer Areas')

Add the second GeoDataFrame to the same map
tehran.explore(m=map, color='blue', label='Tehran Areas')

Display the map
map

In []:

In [88]:

In []:

In [94]:

In []:

In [43]:

In [64]:

In []:

In []:

In []:

11/20/24, 2:30 PM 01-introduction-geospatial-data

file:///E:/python_course/01-introduction-geospatial-data.html 6/7

geojson= {
 "type": "FeatureCollection",
 "features": [
 {
 "type": "Feature",
 "properties": {},
 "geometry": {
 "coordinates": [
 [
 [
 56.372642909090075,
 37.992756079036184
],
 [
 47.187028840249496,
 39.268702414842096
],
 [
 47.580171232158534,
 35.32433304672443
],
 [
 55.21952161076629,
 34.27179112848765
],
 [
 56.372642909090075,
 37.992756079036184
]
]
],
 "type": "Polygon"
 }
 }
]
}

geojson_polygon = geopandas.GeoDataFrame.from_features(geojson['features'])
iran_polygon= geojson_polygon.set_crs('4326')

iran_polygon.explore()

clipped_gdf = taghsimat.clip(iran_polygon)

clipped_gdf.explore()

In [66]:

In [79]:

In []:

In []:

In [81]:

In []:

In []:

11/20/24, 2:30 PM 01-introduction-geospatial-data

file:///E:/python_course/01-introduction-geospatial-data.html 7/7

